Главная Форум Интернет-магазин
Реклама  |  О проекте  |  Обратная связь

 

 



 
Эффекты

Подробно о звуковых эффектах: Дисторшн (искажения)


      Автор: Дмитрий Симаненков
      Дата публикации: 01 сентября 1997 г.

Традиционно слово “искажение” имеет негативную окраску в кругах аудиофилов. Обычно стремятся иметь усилитель низкой частоты с очень маленькими нелинейными и частотными искажениями. Обычные требования к звукозаписывающей и звуковоспроизводящей аппаратуре - нелинейные искажения меньше 0.01% и линейная (без выбросов и провалов, т.е. без искажений) частотная характеристика.

От табличных синтезаторов звука обычно также требуется чистое неискажённое звучание. Однако при студийной обработке звука искажения всё же применяются в устройствах типа “Aural Exciter” производства фирмы Aphex. Но пожалуй единственная область музыкальной индустрии, где без искажений звука обойтись невозможно это электрогитара и всё что с ней связано. Поэтому в этой статье основное внимание будет уделено устройствам обработки сигналов электрогитары, использующим различным формам нелинейных и амплитудно-частотных искажений, но и принцип действия устройств подобных “Aural Exciter” также будет освещён. Понятие хорошего гитарного звука (“good guitar tone”) неразрывно связано с “правильными” нелинейными, частотными и другими искажениями, которым подвергается сигнал электрогитары гитары проходя через специальные гитарные предусилители, фуз(fuzz), овердрайв(overdriver), cустэйн (sustain), дистошн(distortion), гранж (grunge) фильтры, усилители мощности низкой частоты и “гитарные” (отнюдь не Hi-Fi) звуковые колонки. Причём, действительно хорошего гитарного звука обычно пытаются добиться используя в той или иной мере все эти компоненты, образующие все вместе как бы “устройство” или “цепочку” обработки (искажения) сигнала электрогитары. Многие фирмы предпринимают попытки реализовать алгоритмы искажений методами цифровой обработки сигналов (DSP) и объединить все искажающие элементы в единое (однокорпусное) устройство - гитарный процессор, добавляя в него также эффекты реверберации, хоруса, гармонайзера и компрессора, в той или иной мере изменяющие (искажающие) параметры входного сигнала. Одно из таких устройств вы можете видеть на Рис.1.

Рис.1. Типичный гитарный процессор.

Первым искажающим элементом через который обычно проходит сигнал электрогитары обычно является гитарный предусилитель (pre-amplifier). Это совсем не Hi-Fi предусилитель. Он не должен быть устройством с очень маленьким уровнем нелинейных искажений и не должен иметь абсолютно гладкую амплитудно-частотную характеристику от 20 Гц до 20 кГц. Обычно сразу после предусилителя используют блок регулировки тембра “bass/mid/treble” (исказитель частотной характеристики) и приходится повозится, подбирая положения ручек регуляторов. Гитаристы, как правило, отдают предпочтение ламповым (или хотя бы имитирующим лампы) гитарным предусилителям. Поэтому давайте для начала разберемся с амплитудно-частотными и нелинейными искажениями, вносимыми в сигнал ламповыми (и имитирующими их) предусилителями. Не будем сейчас концентрироваться на конкретных названиях усилителей дабы не отвлекаться от главной темы - “искажения”, а также потому, что характерные свойства разных ламповых (и имитирующими их) предусилительных устройств не сильно отличаются друг от друга. Однако, я думаю, что читатели легко догадаются о каком усилителе идет речь, посмотрев на Рис.2.

Рис.2. Ламповый усилитель.

Для начала включим ламповый усилитель и гитарный процессор в режим “clean tube” или “чистый ламповый звук” и подадим на вход синусоидальный сигнал (Рис.3.) частотой 440 Гц.

Рис.3. Тестовый синусоидальный сигнал.

На выходе этих устройств мы увидим очень похожие сигналы, примерно такие как показан на Рис.4.

Рис.4. Форма выходного сигнала в режиме “чистый ламповый звук”

Очевидно, что исходный синусоидальный сигнал подвергся значительным нелинейным искажениям. Их уровень составляет примерно 9..10%, что очень далеко от типичных значений (0.01% и менее) для обычных, негитарных усилителей. Характерна также сильная асимметрия выходного сигнала, необходимая для обогащения его спектра чётными гармониками. В случае отсутствия чётных гармоник звук приобретает неестественный синтезаторный, плоский, “бедный”, “примитивный” оттенок. Спектр синусоидального сигнала, искаженного ламповым (или имитирующим его) предусилителем показан на Рис.5.

Рис.5. Спектр синусоидального сигнала, искаженного ламповым (или имитирующим его) предусилителем.

Хорошо видно (Рис.5.), что спектр сигнала после гитарного предусилителя значительно обогащён как чётными так и не чётными гармониками. Амплитуды гармоник достаточно быстро спадают начиная с -18 дБ для второй гармоники и до -72 дБ для 18 гармоники. Амплитудно-частотная характеристика, типичная для гитарных предусилителей, показана на Рис.6.

Рис.6. Амплитудно-частотная характеристика, типичная для гитарных предусилителей в режиме “чистый ламповый звук”.

Таким образом типичные “правильные” или “ламповые” нелинейные искажения на стадии предварительного усиления сигнала должны генерировать как чётные так и нечётные гармоники исходного сигнала с достаточно быстрым спадом их амплитуд в зависимости от номера гармоник. А типичные искажения амплитудно-частотной характеристики (АЧХ) вносимые на стадии предварительного усиления сигнала заключаются в небольшом подъёме усиления ( +6 дБ) в диапазоне частот 3..8 кГц и резком спаде АЧХ начиная с 16..18 кГц до -46 дБ в районе 22 кГц.

Фуз (fuzz), сустэйн (sustain), овердрайв (overdriver) и дисторшн (distortion) очень популярные звуковые эффекты, базирующиеся на использовании нелинейных и амплитудно-частотных искажениях. Это довольно схемотехнически несложные устройства, которые может самостоятельно изготовить любой даже начинающий радиолюбитель. Построены все эти устройства примерно на одних принципах. На Рис.7 приведена схема очень популярного в своё время (десять лет назад) овердрайва, скаченная из Интернета.

Рис.7. Типичная схема овердрайва, фуза или дисторшна.

Устройства, использующие подобные электрические принципиальные схемы, под названиями или фуз, или овердрайв, или дисторшн выпускались да и всё ещё выпускаются многими фирмами. Несмотря на простоту принцип работы такого устройства достаточно интересен и поучителен. Рассмотрим его более подробно. Входной сигнал с разъёма IN поступает через конденсатор 0.01 mF на вход операционного усилителя. Этот конденсатор и резистор 1М образуют фильтр высоких частот с частотой среза 100 Гц, обеспечивающих “завал” коэффициент усиления устройства на частотах ниже 100 Гц. Такая фильтрация сигналов характерна и для многих ламповых усилителей. Далее сигнал усиливается операционным усилителем в 2--200 раз. Коэффициент усиления регулируется резистором 500 кОм. Очень интересная и важная деталь, во многом определяющая качество звука этого устройства - конденсатор 0.05 mF, резистор 4К7 и переменный резистор 500К образуют фильтр высоких частот с переменной частотой среза! При коэффициенте усиления 2 фильтр ослабляет частоты сигнала ниже 100 Гц, а при коэффициенте усиления 200 будут ослабляться частоты сигнала ниже 4 кГц, что эквивалентно значительному подъёму АЧХ в районе 4 кГц и выше. Далее усиленный сигнал поступает на ограничитель (нелинейный исказитель), выполненный на двух включенных встречно-параллельно диодах, совмещённый с фильтром низких частот с частотой среза 10 кГц (имитирующим “завал” высших частот в гитарных предусилителях). Как видите даже такое простое устройство производит довольно сложные АЧХ и нелинейные искажения. Типичный спектр гармоник на выходе фуза, дисторшна и овердрайва при подаче на вход синусоидального сигнала приведён на Рис.8. На графике хорошо заметно характерное для транзисторных устройств отсутствие чётных гармоник. На вход был подан синусоидальный сигнал частотой 440 Гц. Следовательно, пик второй гармоники на графике Рис.8 должен находится на частоте 880 Гц. Однако там практически ничего нет. Амплитуда второй гармоники находится на уровне -80 дБ. Чётные гармоники более высокого порядка также имеют очень маленькие амплитуды. Возможно этим и определяется некоторая “тусклость”, “транзисторность” звука стандартных фуз, дисторшн и овердрайв устройств. Медленный спад амплитуд нечётных гармоник видимо и добавляет в звук то, что обычно называют “песком” или высокочастотным треском.

Рис.8. Типичный график спектра гармоник на выходе фуза, дисторшн или овердрайва при подаче на вход синусоидального сигнала.

Таким образом общая логика работы исказителей сигнала типа фуз, дистошн, сустайн и овердрайв заключается в предварительном ослаблении самых низких частот (ниже 100..200 Гц) в спектре входного сигнала, в усилении сигнала в десятки (иногда в сотни) раз с одновременным искажением АЧХ в области средних частот (значительный “подъём” в области 3..6 кГц) и последующим двухсторонним симметричным ограничением сигнала и, наконец, окончательной отфильтровкой (ослаблением) высокочастотной части (выше 3..10 кГц) в спектре сигнала. На рис 9. показана типичная АЧХ устройства типа сустэйна. Аналогичная картина АЧХ наблюдается и для фуз, дисторшн и овердрайв.

Рис.9. Типичная АЧХ искажающих устройств типа фуз, дисторшн, овердрайв и сустайн.

Различия между искажающими устройствами сведены в таблицу 1.

Таблица 1.

 

Частота среза входного ФВЧ

Ограничитель

Частота среза выходного ФНЧ

фуз

нет

“жёсткий”

4..8 кГц

дисторшн

400 Гц..3 кГц

“средний”

3..6 кГц

овердрайв

100 Гц..800 Гц

“мягкий”

3..6 кГц

сустэйн

100 Гц

“средний”

0,8..1,5 кГц

 

В устройствах типа фуз часто отсутствует предварительный фильтр, ослабляющий низкие частоты. В них применяется жёсткий ограничитель типа включенных встречно-параллельно диодах в обратную отрицательную связь операционного усилителя. В дисторшне, как правило, используются предварительные фильтры высокой частоты (ФВЧ) подавляющие частоты в полосе от 0 Гц до 0.4 кГц..2 кГц (обычно это “дифференцирующая” RC-цепочка ), средний по жёсткости ограничитель на диодах и выходной фильтр низких частот с частотой среза 3..6 кГц, обеспечивающий спад АЧХ на высоких частотах 12..24 дБ и более на октаву (фильтр бетрвота 2..6 порядка). Овердрайв, на мой взгляд, призван имитировать перегрузку лампового усилителя и поэтому имеет незначительное подавление низких частот, “мягкий” ограничитель и плавный спад усиления на высоких частотах. Сустэйн обычно имеет значительный коэффициент усиления, не очень “жёсткий” ограничитель и фильтра нижних часот, ослабляющий частоты выше 800..1500 Гц. Основное отличие исказителей в “фирменных” ламповых гитарных усилителях от большинства транзисторных устройств в том, что спектр сигналов на выходе ламповых усилителей содержит и чётные и нечётные гармоники. Может быть именно поэтому музыканты предпочитают звук ламповых гитарных “примочек”.

Тенденции развития искажающих устройств типа фуз, овердрайв, сустэйн и дисторшн заключаются в применении активных фильтров на операционных усилителях вместо RC (резистор-конденсатор) цепочек, имеющих более крутые скаты своих частотных характеристик и большее подавление нежелательных высокочастотных компонент (т.е., так называемого “песка”). Также большое внимание разработчики уделяют созданию более совершенных устройств ограничения и нелинейного искажения сигнала. Так на одном из серверов Интернет (www.geocities.com/SiliconValley/Pines/7899) недавно появилась интересная схема дисторшн (Рис 10). В отличии от традиционного встречно-параллельного включения двух диодов (Рис.7) в этом современном искажающем устройстве применяется сложная схема на операционном усилителе, дающая более насыщенный и плотный звук. Однако в этой схеме также будут подавляться чётные гармоники из-за её симметричности. По видимому для дальнейшего улучшения звучания исказителей следует проектировать схемы не подавляющие чётные гармоники.

Рис.10. Часть современной схемы дистошн от независимых разработчиков, скаченная из Интернет.


При использовании данной статьи на других Интернет-ресурсах указание автора и прямая ссылка на guitar.ru обязательна!
распечатать
статью
подписаться на
RSS-канал
отправить
другу
подписаться
на рассылку
мы
ВКонтакте
мы в
LiveJournal
мы в
Twitter



Имя:
Ваше мнение:
Введите символы на картинке:


Последние сообщения:

30.07.2010, Максим
здравствуйте! встречал выражение, что если использовать и overdrive и distortion, один из них будет разогревать другой. подскажите,пожалуйста,что из них лучше поставить на этот самый \"разогрев\". и еще, \"разогрев\" действует только при включенной примочке?

Все сообщения